2020 International Conference on Computer, Network, Communication and Information Systems (CNCI 2020)

Research on General File Storage Scheme Based on
Hadoop

Huimin Liu*" and Huijie Liu>P

!Beijing University of Technology, Beijing, China
2China Railway Taiyuan Group Co.,Ltd., Shanxi Taiyuan, China
a. 18935399040@163.com, b. 1136592603@qq.com
*corresponding author: Huimin Liu

Keywords: Merging algorithm, correlation, storage of common files, cache replacement
strategy.

Abstract: HDFS is Hadoop's underlying distributed file storage system, designed for large
files. When accessing a large number of small files, the problem of low read and write rate
and excessive memory load will be encountered. Therefore, HDFS is optimized for the
problem of different size files. Firstly, the historical access log is analyzed, the relevance
between files is acquired by using Apriori algorithm, the correlation probability model is
established, and then a directed graph merging algorithm based on correlation is proposed.
In order to solve the problem of low access rate caused by small file merging, prefetching
strategy and LRU substitution strategy based on high heat were introduced. Experimental
results show that this scheme can effectively reduce the metadata volume of NameNode,
improve the memory utilization, and effectively improve the file read and write
performance.

1. Introduction

With the development of information technology and the popularization of network, the data closely
related to our life is growing rapidly in the form of explosive index. The era of big data has come.
Cloud computing has been integrated into government public utilities, e-commerce, education,
entertainment industry, medical and health care and other fields, and is affecting people's clothing,
food, housing and transportation. According to the authoritative release of the 44th statistical report
on the development of China's Internet published by CNNIC [1], by the end of June 2019, the
number of Internet users in China had reached 854 million, and the Internet penetration rate had
exceeded 60%. Take Headline and Tik Tok for example, according to the data announced by the
company (byte dance) ,as of July 2019, the global total DAU (daily active users) of byte-dance's
products exceeded 700 million, and the total MAU (monthly active users) exceeded 1.5 billion, of
which Tik Tok DAU exceeded 320 million. As the most frequently used taxi platform in China,
Didi processes more than 106 TB of track data and 4.78 PB of comprehensive data every day.
People enjoy the achievements and convenience of the scientific and technological progress, the
number of small files, such as pictures, files and videos, is growing exponentially. According to the
latest white paper released by IDC (International Data Company) China's data circle will increase to

Published by CSP © 2020 the Authors 641

48.6 ZB by 2025, accounting for 27.8% of the world's total, becoming the largest data circle, in
which a variety of small files are everywhere.

The Hadoop file system HDFS released by Apache Software Foundation is a parallel cluster and
distributed file system, which can quickly process large data sets. At present, it has been researched
and applied by well-known companies at home and abroad, such as Huawei, Tencent, Baidu,
Alibaba, Didi, Facebook, China Mobile, etc. [2]. HDFS is a Java open source implementation of
Google GFS, which provides the underlying support for distributed computing. It has the advantage
of ignoring the hardware errors of machines, and can also migrate and upgrade clusters at a low cost.
It is an ideal file storage system, but not a perfect file storage system. HDFS is designed to store and
process large files conveniently. It adopts the blocking strategy to make large files transfer and store
quickly among multiple machine clusters, so that each file occupies one or more data blocks [3].
But with the emergence of electronic social networking, entertainment new media, scientific
research and computing, a large number of small files are generated. The volume of photos, audio,
and files is usually between 30K and 8M, far smaller than the size of the data block in HDFS.
Therefore, for massive small files, the problem of HDFS can be summarized into three points: (1)
the memory pressure of NameNode is large. In the cluster, the metadata of each small file will
occupy a NameNode. With the increase of the number of small files, the load of NameNode
gradually increases and the utilization rate of internal storage space is low. (2) The efficiency of
reading and writing files is low. In data interaction, frequent interaction between requester and
NameNode increases the load of NameNode and reduces the efficiency of file reading and writing.
(3) The efficiency of file retrieval is low. HDFS itself lacks prefetching mechanism, while small file
storage presents a decentralized state. Although Hadoop introduces MapReduce, it does not
significantly improve the read rate of HDFS.Be advised that papers in a technically unsuitable form
will be returned for retyping. After returned the manuscript must be appropriately modified.

Therefore, how to build a general file storage system to improve system performance and user
experience has been a hot issue in IT industry for a long time. The following paper takes a large
number of small files as the research object, briefly expounds the research results at home and
abroad, introduces in detail the improvement scheme of establishing a general file storage system,
and builds a simulation test platform for comparative experiments, and analyzes and summarizes
the experimental results.

2. Related Work

In view of the impact of HDFS on the working efficiency of small files, there are some research
achievements in this aspect at home and abroad, which are mainly divided into two strategies: one
is the general small file storage strategy, and the other is the small file HDFS improvement scheme
for specific scenarios.

Hadoop has three self-research strategies for small files [4]: Hadoop Archives (HAR), Sequence
File, and Map File. HAR effectively stores small files into HDFS by means of filing, packaging and
archiving several small files containing metadata information and content of small files into a single
HAR file and then accessing the small files. The Sequence File is a serialized combination of a
large number of small files into a large File using key-value keys and supports segmentation and
block compression. Map File is a Sequence File after sorting, which USES index as the data index
of the File to record the Key value of the data File and the offset of the data. All three contain
disadvantages: once the file is set up, HAR cannot be modified, compression and automatic deletion
are not supported, and merging takes a long time. The Sequence File has no index of its own, so it
traverses globally during retrieval. Map File consumes a portion of memory to store the index data.

642

Article [5], NHAR scheme is proposed by improving HAR. Its idea is to hash the metadata of small
files to improve the metadata management of NameNode, and then to establish indexes.

In the research field, most scholars focus on optimizing the amount of metadata, then merging
small files into large files for storage. The processing idea is mainly from two aspects: one is the
preprocessing of files, what is the benchmark of the association between files, how to set the
benchmark to make files with large association can be selected; the other is the small file merging
algorithm, which can improve the memory utilization rate for the files meeting the Association, so
as to reduce the overhead of nodes and save magnetism Disk storage space.

In terms of file preprocessing, article [6, 7] all use the filtering method based on file extension.
The former also uses encryption technology to encrypt files, and then merges small files according
to the size of files. And the latter uses pipeline merging to improve the efficiency of memory. The
preprocessing based on scene use usually adopts the method of classification. For a large number of
logs generated in the computer, article [8] uses Java coding technology to transfer out to XML file,
and then preprocesses according to the device name. Article [9] is classified and merged based on
the Department of management documents, which is of great significance to the storage and
research of national cultural resources in China. Article [10] analyzes user’s behavior through small
file access log and merges according to the access frequency between files, which is more accurate
than other preprocessing methods. Generally, the user will make a request again for the first file in a
unit time, so that the file will have a clustering range. In the unit range, merging and storing the files
with high correlation can not only improve the efficiency of reading and writing, but also reduce the
system load. Therefore, this paper uses the historical access log as the basis of relevance.

After Hadoop 2.0, if the file size exceeds 128M after merging, the metadata will increase and the
load of NameNode will increase. Otherwise, the space will be wasted. In reference [11], a Tetris
merge algorithm based on balanced data block is proposed for small file merging, which aims to
make the merged large files evenly distributed. In reference [12], a strategy of setting up multiple
NameNode and dynamically dividing ring metadata is proposed. By starting two main nodes and
hash algorithm at the same time, metadata is evenly distributed on NameNode. In reference [13], an
optimization algorithm OMSs based on MapFile is proposed. From the worst point of view, small
files are combined into a large file according to the worst fit strategy. In order to improve the
performance of cluster and reduce the reading time of data, a heterogeneous aware replica deletion
scheme is proposed in reference [14]. In reference [15], a metadata management method based on
log merging tree and flat directory is proposed, which uses optimization measures such as memory
mapping file and boolean filter to improve the ability of data storage, and uses flat directory to
enhance the integrity and operability of metadata in the access process.

After small files are merged, there is usually a problem of low reading efficiency. Domestic and
foreign researchers have also made relevant research and improvement. Article [16] proposes to
build a secondary index based on the creation time and file type, and create a prefetching and cache
module based on the commonly used files of users, which effectively improves the utilization of
system space. Article [17], a data prefetching scheme scheduling aware is proposed to improve the
access of non-local map task's age data, and the performance of hybrid cloud in data locality is
significantly improved. For the problem that the application program can only access the data set
once and reclaim the memory, article [18] proposes a heuristic algorithm that uses the standard form
of integer linear programming to obtain the optimal solution and the job scheduling information to
prefetching the data. This mechanism can effectively reduce the time of job execution in
heterogeneous environment. All of these literatures make the performance of data prefetching and
the caching mechanism of the system significantly improve the reading performance of files.

Through the analysis of the achievements of various researchers, we can see that the
performance of small files cannot be improved without the combination algorithm and prefetching

643

caching mechanism. Therefore, it is necessary to improve and upgrade HDFS and design a general
file storage system based on Hadoop.

3. Optimization of General File Storage Scheme Based on Hadoop

The optimization scheme of general file storage file system is divided into four parts: the first step
is to judge the size of the file, and then deal with it separately; There are two parts in the second
step :on the one hand, continuing to use the strategy of HDFS file storage for the large file; on the
other hand, analysing the small file according to its historical access log and establishing the
association probability model; the third step is to use the proposed merging algorithm based on
directed graph. The fourth step is to build a general file storage system based on Hadoop by using
cache replacement strategy to build a cache mechanism.

3.1. Establishment of Correlation Probability Model

In general, people will be interested in related items, and then businesses will use this mentality to
build a binding model. In file access, if we use "bundle storage" reasonably in unit time, we can
effectively save storage resources and reduce the space occupation of system storage.

Apriori [19] algorithm is a frequent item set algorithm for mining Boolean association rules.
Through the double standards of file confidence and support, the associated files in unit time can be
acquired at one time. By using this algorithm to filter the association of small files, the memory
consumption of NameNode can be reduced and the access efficiency of small files can be improved.

First of all, the log files are counted. Due to the large number of files, it is impossible to identify
all the file information. The simulation data of whether small files are accessed in unit time is
shown in Table 1.

Table 1: Simulated experimental data.

UID Filel File2 File3 File4
0 1 0 1

AN NS [W[IN|—
— | | | —

1 1
0 1
1 0
0 0
1 1

ol Rl kel Ll fan)

In order to analyze the correlation between Filel and File2, make filel A and file2 B, and the
probability that filel and File2 are accessed in unit time can be expressed by support degree, as
shown in equation 1, and the support degree of filel to File2 is 0.5 through calculation.

support = P(AB) (1)

In unit time, after filel file is requested to be accessed, the probability that File2 file is also
accessed can be expressed by confidence, as shown in equation 2, the confidence degree of filel to
File2 can be calculated as 0.6.

P(AB)
P(A))

confidence = P(B|A) =

644

If we give min_confidence of 0.3 and min_support of 0.5, we can show that filel and file2 are
strongly related, and file2 can be used as an associated file. Reasonable determination of confidence
and support is of great significance. If P(B|A) is very high, but P(AB) is very low, it means that
these two documents appear rarely at the same time. Even if the confidence is higher, it cannot be
used as a reference. Therefore, it is reasonable to use Apriori to set the minimum confidence and
support.

3.2. Association-based Directed Graph Merging Algorithm

By using the Apriori algorithm, we can filter out the small file set that meets the correlation
standard, but it is only limited between two files. If two small files are stored in each DataNode, the
space utilization is still low, and the repeated storage of small files in each DataNode will also
affect the retrieval rate of small files, which cannot solve the problem substantially. Based on the
association relationship between multiple files, we propose a small file merging algorithm based on
Association directed graph.

Definition 1: the digraph is <V,E>, as shown in Figure 1, which set V and E are limited, and V
is not an empty set, including V as node,, its elements in the set are vi,v2,v3,v4,v.., as shown in
equation 3; E is an edge set, and the elements in the set are directed edges, as shown in equation 4;
E is the set of edges between the nodes in V, and is a multiple subset of Cartesian product V xV.

V={viva vy vav.} €)
E = {{vy, vah (v, vad, (v, v, 0, v, vy, (v, v) (v, v D (v, v) (VL va)] 4)

After file (v1) is triggered, the access probability of associated files (v2, v, va, v..) are taken as
the weight of the directed graph <V, E>, and P(e12te13te14ter,.)<l.

Figure 1: Directed graph based on node correlation degree.

Taking digraph <V, E> as an example, the flow chart of the association based digraph merging
algorithm is shown in Figure 2. In the process of small file association merging, if v; is de
associated with v», but it does not mean that e;, » must be higher than e, ;. In addition, if a node is
deep enough, the parent node cannot be found. Therefore, the files to be merged cannot be deleted.

645

The files in the
10— qcandidationList that
exist all rear drives

Erther files in gwaitLi
besides grandidationlis

Start

MaxConfidenceFile

Initialize

Traverse gwaitList[wi]
from gwaitList[first file]

List Hist " MaxConfidenceFile=Seco
ve
AR z ndaryMaxConfidenceFile

izelgcandidationListF
axConfidenceFile)»blg

gcandidationList

no
Traverse the
et rear drive of
s MaxConfidenceFile 3
L : G last rear drive
in gcandidationList ¥es it ik

Traverse the rear
sekdile Jothe MaxConfidenceFile deve df : S L
geandidationList MaxConfidenceFile gcandidationList
in glist
Traverse the Reverse
rear drive of BubbleSort(th Rear drive finish
File in qgList eqwaitList)

11}
w

)) Set Files inthe ! .
Rear drive - 2 E—e RN e Rear drive
agwaitList[vi]

o

Figure 2: A flow chart of merge algorithm based on relevance directed graph.

(1) Initialize qlist (small file set), qwaitlist (small file set with confidence), qcandidationlist
(ready merge small file queue), turn to 2;

(2) Select a file as the input item, store it into qcandidationlist, file is used as the precursor,
traverse the backdrive of this file in qlist, if there is a backdrive, jump to 3; otherwise, turn to 11;

(3) The found files are stored in the qwaitlist, and the qwaitlist is named by the precursor, turning
to 4;

(4) According to the confidence degree, perform the reverse bubble sorting on qwaitlist (Due to
the advantages of bubble sorting: strong stability, space complexity, and time complexity are
relatively the lowest). Select the first small file as the maxconfidence file, and turn to 5;

(5)To determine whether maxconfidentiefile has been included in the qcanditionlist. If yes, turn
to 6.;0therwise, turn to 7. In addition to the first merge of input files, this judgment is generally
required.

(6) Loop through qwaitlist to find the small file with the next highest confidence level, and then
turn to 7 if the maxconfiidentefile does not exist in qcanditionlist; In the end, if we didn't find one
that met the requirements, turn to 9.

(7) Judge whether the size (qcanditionlist + maxconfidentiefile) is greater than block (128M). If
it is greater than 128M, do not update the qcanditionlist and turn to 11; otherwise, turn to 8.

(8) Save maxcondensefile into qcandidationlist, and then use maxcondensefile as the precursor to
traverse the qlist to find the successor. If there is rear drive, turn to 3; otherwise, turn to 9.

(9) QwaitList named after the trigger file does qwaitList exist in addition to the existing file of
gcandiationlist,, if so, turn to 7; if not, turn to 10;

646

(10) In the qcandidate list, the precursors of all the rear-drive nodes are queried, the rear-drive of
the precursors are traversed in turn, and each rear-drive is queried whether there is still a rear-drive
as a precursor. If so, turn to 3; if not, iterate until there are no new small files or memory greater
than 128M;

(11) Output qcandidationlist.

Using this algorithm, we can filter out the small files to be merged, with two exceptions:
memory overflow, and all small files satisfying the confidence are put into the qcandidationlist.

3.3. Merge and Index Mechanisms

Traverse qcandidationlist according to the confidence between small files, the contents of small
files are merged by mergefile (), and the merged file is named NameNode according to the time the
file was written.

In HDFS, the client obtains the metadata by visiting NameNode, and then obtains the DataNode
by offset to obtain the small files in the data block. The access to each small file must interact with
NameNode, which increases the load on the system. Therefore, building an appropriate index
mechanism can reduce the consumption of NameNode. What we use is to build an index file for the
named large file, store it in the block, and record the mapping relationship between the small file
and the large file, as well as the volume size and offset of the small file. This method can effectively
reduce the number of interactions with NameNode and improve the performance of the system.

3.4. Prefetching and Caching Mechanisms

We use the merge algorithm and index mechanism to reduce the memory consumption, but affect
the read performance of the system. The HDFS is designed based on the mode of "write once, read
many times". Access information can be obtained by directly accessing the DataNode. There is still
a problem of hot data. On the basis of the original HDFS, we also added the process of association
calculation and small file merging, which has a more delayed impact on the user's file reading.
Therefore, we introduced prefetching and cache machine System.

The prefetching mechanism we use is to directly return the information stored in the cache to the
user if it hits the cache after the user sends out the request; if not, send a request command to HDFS
to transmit the information returned by HDFS to the client. At this time, what we need to do is to
package the small files associated with the request file into the cache. If so, when the access
frequency is relatively high, its correlation file will also be accessed, so as to improve its access
speed. In this case, due to the space limitation of cache, not all related files can be cached, so how
many files with high correlation can be prefetched becomes a problem. For example, When
customers are shopping at the mall, the time for customers to choose goods plus the time for sales to
provide related services cannot exceed the patient waiting time of customers, otherwise, customers
will be lost. We define that the time to hit the file from the cache is time (cache), the time to directly
access the file from HDFS is time (HDFS), and the time to prefetch each file is time (prefetching).
Then, the time for the user to request and get the file from HDFS once and cache the related file is
as shown in equation 5.

time(read from HDFS) = time(HDFS) + Z (time(prefetching) X B)
5)

The waiting time of the user is time (wait). The number of caches that can be cached is shown in
formula 6, 7.

647

time(read from HDFS) < time(wait) (6)

time(HDFS) + Z(time{prefetchiugj X B) < time(wait)
=1 (7

Through equation 7, we can find that the number depends on Pi, which can ensure that the
system provides high-quality prefetching performance.

Cache is only a temporary tent and can be replaced at any time. Therefore, clearing cache in time
can clear redundant data and ensure real-time data. In general, the Least Recently Used (LRU)
algorithm will adopt a higher frequency, and clear the data that has not been accessed for a long
time and has few accesses from the cache. However, we analyze the internal data access log of the
HDFS cluster of Yahoo [20], It is found that 89.61% of the data blocks will have the last access
within 10 days after their upload, and the probability of data block access is almost zero. When it
comes to real-time and large amount of data, this algorithm is not perfect. Based on the real-time
and limited cache, we choose the high-hot and commonly used associated file cache, which can
improve the file access speed and cache hit rate.

4. Experiment and Result Analysis

The experimental environment adopts a Hadoop cluster of a NameNode and two DataNodes, all of
which are configured on Intel 15 CPU 2.3GHz, 4GB memory and 20TB disk. Our operating system
is RedHat 7.0, Hadoop version is 2.7.5, JDK version is 1.7, HDFS data block size is 128M, and the
number of copies is 3. By comparing the HDFS, Har and our improved HDFS (IHDFS), the
evaluation criteria are volume of metadata used, average file read time and upload time.

In order to ensure the authenticity and effectiveness of the experiment, 80000 files are selected in
this paper, with size distribution ranging from 100k to 150m, mainly small files, especially those
under 5Sm. The number of selected files and the volume of small files are shown in Figure 3. We
tested the performance of each of the 10000,20000,400000, and 800000 files for the experimental
subjects.

=]
o

s Vo W 0 v
% 7% ¥ s% Mo 9%
= 14% 7%
o 80
£
=2
o
>
60
404 90% 82% 85% B
20
0

T T T T
10000 20000 40000 80000
files number(n)

Figure 3: File number and volume distribution scale graph.
In this paper, the directed graph merging algorithm is based on the correlation of small files,

which uses the historical access log of coding to small files to analyze and summarize into excel,
and then combines the Apriori algorithm to realize which small files are accessed together with high

648

probability. We use enumeration trial and error method to set the minimum confidence level of
small files to 0.3, and the support level should not be less than 0.5, then we filter out small files that
conform to confidence > 0.3 & & support > 0.5.

4.1. Experiment on File Memory Consumption

The original HDFS, HAR and IHDFS were used to carry out 5 groups of experiments respectively,
each group of experiments was carried out for 3 times, and the average value was taken as the
evaluation basis. The volume of metadata is shown in Figure 4, with the x-coordinate representing
the number of files and the y-coordinate representing the volume of metadata in the NameNode.

—a— HDFS
350 - —v— HAR
—*— IHDFS

300

Volume of metadata(MB)
8 3 B
! I h !

o
<]
L

o

T T T T
0 20000 40000 60000 80000
Number of Files(N)

Figure 4: Volume of metadata in the NameNode

It can be intuitively seen from the above figure that with the increase of the number of files, the
number of small files increases sharply, and the memory consumption of HDFS becomes more and
more serious; HAR does reduce memory consumption by taking advantage of archiving, while
IHDFS consumes the least memory. The reason is that small file merging reduces the metadata of
NameNodes, thus reducing memory consumption and improving space utilization.

4.2. Experiment with File Reading Time

The original HDFS, HAR and IHDFS were used to conduct five experiments, each of which was
conducted three times. The average value of the data was selected and divided by the total number
of files. That is the Average Read Time per File (ARTPF), as shown in equation 8. The relationship
between the number of files and ARTPF is shown in Figure 5. The abscissa represents the number
of files, and the ordinate represents the average time reading files.

2t read time;

B (8)

ARTPF =

649

—a— HDFS
—¥— HAR
504 —+— HDFS

T T T T
20000 40000 60000 80000
Number of Files (N)

Figure 5: Average read time per file.

It can be seen from the figure that HAR scheme consumes the most time when reading every file,
because it has no index mechanism and the retrieval is slow. As the number of files increased, the
reading time of HAR and HDFS increased significantly, but the reading time of IHDFS was only
half that of HDFS. This is because we added the prefetching and cache strategies, and the adoption
of HDFS can improve the reading performance of the system and ensure the robustness of the
system.

4.3. Experiment with File Uploading Time

Use HDFS, HAR and IHDFS respectively conducted a series of five experiments, the experiment
done three times in each group to choose, the Average of the sum of the File Upload Time divided
by the total number is the Average File Upload per Time (AUTPF), as shown in the equation of 9,
the number of files and AUTPF relations as shown in Figure 6, abscissa represent the number of
files, the consumption of ordinate represents the average upload file time.

2L, upload time;

n ©)

AUTPF =

s HDFS
—v—HAR
—+— IHDFS

260

‘. — /

/ / et
/

ms

UTP|

180 4 :/
160 /

T T T T
20000 40000 60000 80000
Number of Files (N)

Figure 6: Average upload time per file.

The unit file upload time can reflect the upload performance of the scheme. According to the
information in the figure, the storage performance of HDFS and HAR is close, while the
performance of IHDFS is obviously better than theirs. As the number of files increased, the upload
time of files increased, but the IHDFS remained at 0.185s and tended to be stable.

650

5. Conclusions

In this paper, the problems of high memory and low access efficiency of massive small files are
studied, including three modules: establishment of correlation probability model, merging of small
files and prefetching of small files. By taking the relevance and volume of files as parameters, a
association-based directed graph merging algorithm is proposed, an indexing mechanism is
established based on access time and offset, and the LRU substitution strategy is improved by
taking the high heat as the influence factor, so as to improve the cache hit ratio. Combined with the
high processing capacity of HDFS for large files, IHDFS becomes a storage scheme for common
files. Experiments show that IHDFS can effectively merge small files, reduce the pressure of
NameNode, and improve the cache hit ratio by using the pre-fetch strategy to determine the number
of cache files, thus optimizing the file reading performance. It is a pity that the correlation algorithm
proposed in this paper does not consider the type of file, and it is not sure whether the combination
algorithm can achieve the optimal performance under the circumstance of different file types. If the
effect is not expected, how to optimize it will be the future research work.

References

[1] Yu Zhaohui. The 44th statistical report on the development of China's Internet network released by CNNIC [J].
Cyberspace military-civilian integration, 2019 (09):30-31.)

[2] Zhang yifeng. Research and implementation of massive small file processing strategy based on HDFS [D].
Southeast university, 2018.

[3] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, Samir Belfkih, Big Data technologies: A survey,
Journal of King Saud University - Computer and Information Sciences, Volume30, Issue 4, 2018, Pages 431-448,
ISSN 1319-1578.

[4] Fang guodong. Research on voice storage and retrieval of network intercom based on HDFS [D]. Huagiao
University, 2019.

[5] Li X, Han J, Thong Y, Ital. Implementing Websites on Hadoop: A case study of improving small file 1/O
performance on HDFS [J].2013:1-8.

[6] Mohd Abdul Ahad, Ranjit Biswas. Dynamic Merging based Small File Storage (DM-SFS) Architecture for
Efficiently Storing Small Size Files in Hadoop [J]. Procedia Computer Science, 2018,132.

[7] Devi. A distributed efficient storage method for file resources across HDFS cluster [J]. Electronic design
engineering, 203, 27 (21): 14-17 + 22.

[8] Cheng xiaorong, li yujin, li zijun, liu yuchen. Research on optimization method of small and medium file storage in
network security equipment linkage system [J]. Computer knowledge and technology, 2015, 11 (35): 10-11.

[9] Liu yunyu, liu yan. Research on the storage of national folk cultural resources based on cloud platform [J]. Science
and technology vision, 2019 (01): 86-88.

[10] Li tie, yan cairong, huang yongfeng, song yalong. Optimization method of small file access for Hadoop distributed
file system [J]. Computer applications, 2014, 34 (11): 3091-3095 + 3099.

[11] He, H., Du, Z., Zhang, W. et al. Optimization strategy of Hadoop small file storage for big data in healthcare. J
Supercomput 72, 3696-3707 (2016).

[12] Bhang Y,Li D.Improving the efficiency of storing for small files in hdgrs[C].Computer Science & Service System
(CSSS), 2012 International Conference on. IEEE, 2012:2239-2242.

[13] SETHIA D, SHEORAN S, SARAN H. Optimized Map File based Storage of Small files in Hadoop[C]//Ieee/acm
International Symposium on Cluster, Cloud and Grid Computing. 2017: 906-912.

[14] Ciritoglu Hilmi Egemen, Murphy John,Thorpe Christina. HaRD: a heterogeneity-aware replica deletion for HDF'S.
[J]. Journal of big data, 2019, 6 (1).

[15] Wang kun.Research on small file storage mechanism for Hadoop [D]. Beijing University of posts and
telecommunications, 2018.

[16] Luo qing. Optimization and implementation of small file storage problem based on HDFS under Hadoop platform
[D]. Huazhong University of science and technology, 2019.

[17] Chunlin Li, Jing Zhang, Yi Chen, Youlong Luo. Data prefetching and file synchronizing for performance
optimization in Hadoop-based hybrid cloud [J]. The Journal of Systems &, Software, 2019,151.

651

[18] C. Chen, T. Hsia, Y. Huang and S. Kuo, "Data Prefetching and Eviction Mechanisms of In-Memory Storage
Systems Based on Scheduling for Big Data Processing," in IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 8, pp. 1738-1752, 1 Aug. 2019.

[19] Ji, Q., Zhang, S. Research on sensor network optimization based on improved Apriori algorithm. J Wireless Com
Network 2018, 258 (2018).

[20] GreenHDFS: towards an energy-conserving, storage-efficient, hybrid Hadoop compute cluster. Kaushik R T,
Bhandarkar M. International Conference on Power Aware Computing and Systems. 2010.

652

	1.Introduction
	2.Related Work
	3.Optimization of General File Storage Scheme Based
	3.1.Establishment of Correlation Probability Model
	3.2.Association-based Directed Graph Merging Algorithm
	3.3.Merge and Index Mechanisms
	3.4.Prefetching and Caching Mechanisms
	4.Experiment and Result Analysis
	4.1.Experiment on File Memory Consumption
	4.2.Experiment with File Reading Time
	4.3.Experiment with File Uploading Time
	5.Conclusions
	References

